Innovative Timber Composites: Improving wood with other materials

17 October 2013 – Nicosia, Cyprus

Summary of shear connector methods for timber - concrete composites

Alfredo M.P.G. Dias, Sandra R.S. Monteiro; André G.D. Martins University of Coimbra

> Types of timber-concrete connections

Assessment of the connection mechanical properties

Mechanical properties for linear-elastic analysis

Mechanical properties for non-linear analysis

Importance of the connection

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

Connection types usually used

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

Connections with steel fasteners

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

Notched connections

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

There is no standard for the assessment of timber-concrete connections. Most of times, EN ISO 26891 is followed in this type of test, which gives specific indications for various issues, namely:

Loading procedure

Measurements

➤Test report

➢ Very general indications for dimensions and config.

There are three main test configurations used in experimental tests:

Assessment of the connection mechanical properties

Types of test set up most often used

Assessment of the connection mechanical properties

➤ Types of double shear

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

Load application in double shear configurations

- Application of the load and support reaction along the a. s. of the elements
- Application of the load along the a. s. of the element with reaction shifted the a. s. of the other element
- Application of the load shifted the a. s. of the element with reaction along the a. s. of the other element
- Application of the load and support reaction shifted the a. s. of the elements

Numerical and experimental results available in Literature show that:

> The maximum magnitude of the difference using the various test set up is usually lower than 5%

The highest differences shall be expected between the pure shear and the asymmetrical push-out test

The most used linear elastic model is the one given in Annex B from Eurocode 5. The properties required in the analysis are:

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

Action EP100

Types of connection find in literaturegrouped by mechanical behaviour

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

Action EP100

Sample considered in the analysis and outliers (Grubb's test)

Connection	Nr.	Outli	ers
Connection	tests	Stiffness	Strength
Dowel-type fasteners	263	3	0
Axially loaded fasteners	438	3	0
Notches	204	2	1
Notches combined with steel fasteners	51	0	0
Nail plates	65	1	0

Procedure followed:

The values of the mechanical properties were made dimension less for the maximum from each test series

➢Outliers were identified and excluded

> Different statistical distributions were fitted to the sample

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

Dowel type fasteners

>Axially loaded fasteners

>Notches

Notches combined with steel fasteners

>Notches combined with steel fasteners

➢Global results

Variable	k_{ser}^{adim}				F_{max}^{adim}				
Variable	S	v (%)	η	κ	S	v(%)	η	к	
Dowel-type fasteners	0.284	28.4	0.36	3.54	0.113	11.3	-0.06	4.52	
Axially loaded	0.140	14.0	0.15	4.08	0.089	8.9	0.09	2.88	
fasteners									
Notches	0.296	29.6	0.56	3.83	0.124	12.4	-0.45	3.89	
Notches combined	0.246	24.6	0.19	2.32	0.088	8.8	-0.31	2.92	
with steel fasteners									
Nail plates	0.241	24.1	0.98	3.59	0.124	12.4	0.02	1.82	

Results

The slip modulus showed a high coefficient of variation (between 14% and 30%)

Load carrying capacity of the connections showed a lower coefficient of variation (around 10%)

 \succ In most cases the normal distribution was identified as the best statistical distribution

➤ The correlation found between these two mechanical properties was low 0.38

For non-linear analysis the numerical models are used (e.g. FEM). In this type of analysis the whole load slip curve of the connection is necessary.

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

Recent studies show that in some situations accurate descriptions can be obtained based in the linear elastic properties obtained, either from tests or from models.

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

CCOSE Action FP1004

Descriptive models

Foschi – 3 parameter –
$$F = (c + b\Delta u) \left(1 - e^{\frac{-a\Delta u}{c}}\right) \leq F_{max}$$

Foschi RO. Load-slip Characteristics of Nails. Wood Science. 1974;7(1):69-76.

Descriptive models

Jaspart JP, Maquoi R. Prediction of the semi-rigid and partial-strength properties of structural joints. Proceedings of the annual Technical Session, SSRC. Lehig, USA1994.

Descriptive models

Yee-Melchers – 4 parameter -
$$F = c \left(1 - e^{\frac{-\Delta u(a-b+n\Delta u)}{c}}\right) + b\Delta u \leq F_{max}$$

Faella C, Piluso, V., Rizzano, G. Structural Steel Semirigid Connections. Theory, Design and

Coffusiona illustrada adonna

CCDSL Action FP1004

Descriptive models

Wu and Chen – 3 parameter - $F = c n ln \left(1 + \frac{1}{n} \frac{\Delta u}{\Delta u_1}\right) \leq F_{max}$

Depending on the joint configuration

Faella C, Piluso, V., Rizzano, G. Structural Steel Semirigid Connections. Theory, Design and

Software. ilustrada ed2000.

Descriptive models

Ollgaard-Slutter-Fischer – 3 parameter - $F = F_{max} (1 - e^{-\beta \Delta u})^{\alpha} \le F_{max}$

Depending on the joint configuration

Ollgaard JG, Slutter RG, Fisher JW. Shear Strength of Stud Connectors in Lightweight and Normal-Weight Concrete. Eng J Aisc. 1971;8(2):55-&.

Results – Load slip curves

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

Results – Correlations between experimental and model data

Connection type	Foschi	GRAR	Yee- Melchers	OSF
Dowel-type fasteners	0.991	0.995	0.993	
Axially loaded fasteners	0.991	0.994	0.989	0.976
Notches	0.989	0.979	0.991	0.970
Notches combined with steel fasteners	0.979	0.996	0.968	0.982
Nail plates		0.997	0.985	

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CCOSE

Action EP100

Conclusions from the analysis

The five models proposed could describe the load slip behavior in most of cases (3 exceptions)

 \succ High values of coefficient of correlation were obtained for all the descriptive models that could be adjusted

Due to its simplicity and traditional use on timber connections, Foschi's model was the one identified as the best for most of connection types (dowel-type fasteners, axially loaded fasteners, notches and notches combined with steel fasteners)

For the nailplates the Yee-Melcher's model was considered a good solution

Statistical summaries – Parameters *a* and *c* for Foschi's and Yee-Melcher's models

Numerical summaries	Parameter a					Parameter c				
	Т	II	Ш	IV	V	I	Ш	111	IV	V
S- std. Variat .	0,21	0,14	0,32	0,24	0,19	0,07	0,33	0,36	0,10	0,19
η-coef. skew.	0,31	0,20	0,00	-0,01	0,79	0,27	1,09	0,10	-0,20	0,60
Ƙ-coef.kurt.	3,41	3,59	4,82	2,07	3,28	3,43	5,52	5,06	2,95	3,16
I – Dowel-type fastener										

- II Axially loaded fastener
- III Notches
- IV Notches combined with steel fasteners
- V Nailplates

CCDSE Action FP1004

Statistical analysis

The best fittings, for most of parameters were obtained either with normal or log-normal distributions

A high level of symmetry was obtained in most of the histograms (coefficient of skewness close to 0)

High values were obtained for the coefficient of variation

Innovative Timber Composites: Improving wood with other materials

17 October 2013 – Nicosia, Cyprus

Thank you very much for your attention

