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Abstract

In this work, the identifiability of orthotropic stiffness components of clear wood
from a single off-axis compression test was investigated. The parameter identifica-
tion strategy was based on anisotropic elasticity theory, so-called anisotropic-based
method. The proposed approach couples off-axes compression tests on prismatic
specimens with 3D full-field measurements. In practice, these measurements can
be provided by a suitable optical technique such as stereovision or ESPI. Exper-
imentally, specific tests were carried out in order to deal with boundary issues
such as friction and shear-extension coupling effects. Numerically, a finite element
model of the mechanical test was built as a support for optimal inspection the test
configuration in terms of angles orientation (direction cosine matrix), such that
balanced strain components can be reached in the material coordinate system.
Results, conclusions and future work were discussed in view of the identifiability
of all active stiffness components from only one test configuration.

Keywords: Wood, Digital image correlation, material parameter identification,
Compression tests

1. Introduction

The parameters governing constitutive equations of materials are determined
experimentally by means of suitable mechanical tests. In the field of solid mechan-
ics, this issue is presented as an inverse problem where the material parameters
are to be determined from the knowledge of geometry, boundary conditions and
strains (or displacements). Conventionally, this identification is achieved by car-
rying out mechanical tests in which specimen geometry and loading system are
designed to generate homogeneous or simple strain/stress states across the gauge
region. The underlying idea behind this assumption is useful for theoretical analy-
ses because closed-form solutions can be obtained, relating the unknown material
parameters to the load and strain measurements (statically determined tests).
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However, the practical implementation of these tests can be difficult, especially for
anisotropic and heterogeneous materials such as wood. The recent development
of full-field optical techniques has enabled a new glance on the mechanical tests
for material characterisation. The basic idea driving this new approach is that a
single specimen can be loaded in order that several parameters are involved in the
mechanical response, yielding heterogeneous and complex strain fields (statically
undetermined tests). By means of a suitable identification strategy all the active
parameters can be determined afterwards.

Wood is a biological composite material formed by trees. It can be analysed
at several scales of observation from timber down to chemical constituents. The
mechanisms of deformation in wood can be quite complex involving, for instance,
anisotropic, viscoelastic and hygroscopic phenomena. Moreover, the intra and in-
ter variability of wood is reflected on the material parameters governing relevant
constitutive equations. Therefore, the investigation of the wood mechanical be-
haviour raises several difficulties from both modelling and experimental points of
view. In most practical applications and with some simplification hypothesis, in-
voking low levels of stress, short periods of time and minor variations of moisture
content and temperature, wood can be modelled as a linear elastic anisotropic
material. Besides, at the macro scale (0.1-1 m) wood is usually assumed as a
continuum and homogeneous medium. The complete characterisation of the lin-
ear elastic orthotropic behaviour of clear wood requires the determination of nine
independent stiffness components. Conventionally, this set of material parameters
are determined experimentally by carrying out several test methods, in which both
loading and specimen geometry are usually oriented along the material directions.
Moreover, these tests are based on the assumption of simple and homogeneous
stress/strain states across the elementary representative volume of the material at
the scale of observation. This approach represents a great effort from an exper-
imental point of view because only a few (i.e., one or two) stiffness components
are obtained per test configuration. Besides, the complete stiffness matrix will
be characterised from different test and specimen configurations, enhancing vari-
ability. In order to overcome these limitations, a single off-axes compression test
method for clear wood has been recently proposed [1]. This project aims further
improvements of the test method with regard to the identifiability of the whole
set of orthotropic stiffness components. Both experimental and numerical analysis
will be addressed. 3D full-field measurements provided by a stereovision and EPSI
will be envisaged. Preliminary tests were carried out in order to deal with bound-
ary issues such as friction and shear-extension coupling effects, coupling off-axes
compression tests with stereosivion technique (ARAMISr system by GOM). Nu-
merically, finite element analyses of the mechanical test method were performed
in order to optimise the test configuration in terms of angles orientation (direction
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cosine matrix), such that balanced strain components are reached in the material
coordinate system.

2. Identification strategy: Anisotropic-based method

Let us consider the compression test schematically represented in Fig. 1. In
this mechanical model, a rectangular prismatic specimen with nominal dimensions
L (length)× w (width) × t (thickness) is submitted to a uniform and uniaxial
compression stress state at its ends. It is assumed that the material is continuous,
homogeneous and governed by a linear elastic orthotropic behaviour. The identi-
fication strategy used in this work was based on anisotropic elasticity theory. The
focus was given to the identification of the orthotropic linear elastic behaviour of
wood at the macroscopic scale. In the specific case where material and specimen
coordinate systems are coincident, S123 (with 123 ≡ LRT ), the generalised Hooke’s
law writes as (in Voigt notation)



ε11
ε22
ε33
γ23
γ13
γ12


=


S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66





σ11

σ22

σ33

τ23
τ13
τ12


⇒ {ε} = [S] {σ} (1)

where {ε} is the engineering strain pseudo-vector ([6×1]), {σ} is the Cauchy stress
pseudo-vector ([6×1]), and [S] is the compliance matrix ([6×6]). The elements of
[S] can be written as function of the 9 independent engineering elastic constants:
EL, ER, ET , νRT , νLT , νLR, GRT , GLT and GLR where E, ν and G stands for
Young’s modulus, Poisson’s ratio and shear modulus, respectively, as

[S] =


1/EL −νRL/ER −νTL/ET 0 0 0

−νLR/EL 1/ER −νTR/ET 0 0 0
−νLT/EL −νRT/ER 1/ET 0 0 0

0 0 0 1/GRT 0 0
0 0 0 0 1/GLT 0
0 0 0 0 0 1/GLR

 . (2)

Since the compliance matrix is symmetric (Sij = Sji), the following relationship
must be verified νij/Ei = νji/Ej (i, j = 1,2,3).

Let us consider now the general case in which the material coordinate system
is rotated with regard all axes of the specimen coordinate system. In this case,
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Figure 1: Schematic representation of the off-axis compression test.

the stress state in the material coordinate system ([σ]) can be determined from
the applied stress state in the specimen coordinate system ([σ′]) by the following
transformation rule of second-order symmetric tensors

[σ] = [T ]T [σ′][T ], (3a)

with

[σ] =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 , [σ′] =

σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 and [T ] =

 l1 l2 l3
m1 m2 m3

n1 n2 n3

 (3b)

where σij = τij when i ̸= j, [T ]T is the transpose of matrix [T ] and lk, mk e nk

(k = 1, 2, 3) are the direction cosine between material and specimen coordinate
systems. In Voigt notation, Eq. (3) writes



σ11

σ22

σ23

τ23
τ13
τ12


=


l 21 m 2

1 n 2
1 2l1m1 2m1n1 2l1n1

l 22 m 2
2 n 2

2 2l2m2 2m2n2 2l2n2

l 23 m 2
3 n 2

3 2l3m3 2m3n3 2l3n3

l1l2 m1m2 n1n2 l1m2 + l2m1 m1n2 +m2n1 l1n2 + l2n1

l2l3 m2m3 n2n3 l2m3 + l3m2 m2n3 +m3n2 l2n3 + l3n2

l1l3 m1m3 n1n3 l1m3 + l3m1 m1n3 +m3n1 l1n3 + l3n1





σxx

σyy

σzz

τyz
τxz
τxy


(4a)

or
{σ} = [Tσ′σ] {σ′} . (4b)
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In the same way, the strain tensor in the material and specimen coordinate system
are transformed by the following rule

[ε] = [T ]T [ε′][T ], (5a)

with

[ε] =

ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

 and [ε′] =

εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 (5b)

where εij = γij/2 when i ̸= j. In Voigt notation, Eq. (5) writes



ε11
ε22
ε23
γ23
γ13
γ12


=


l 21 m 2

1 n 2
1 l1m1 m1n1 l1n1

l 22 m 2
2 n 2

2 l2m2 m2n2 l2n2

l 23 m 2
3 n 2

3 l3m3 m3n3 l3n3

2l1l2 2m1m2 2n1n2 l1m2 + l2m1 m1n2 +m2n1 l1n2 + l2n1

2l2l3 2m2m3 2n2n3 l2m3 + l3m2 m2n3 +m3n2 l2n3 + l3n2

2l1l3 2m1m3 2n1n3 l1m3 + l3m1 m1n3 +m3n1 l1n3 + l3n1





εxx
εyy
εzz
γyz
γxz
γxy


(6a)

or
{ε} = [Tε′ε] {ε′} . (6b)

The transformation matrices of stress ([Tσ′σ]) and strain ([Tε′ε]) satisfy the follow-
ing properties

[Tσ′σ]
−1 = [Tε′ε]

T and [Tε′ε]
−1 = [Tσ′σ]

T . (7)

The transformation of the compliance matrix [S], between material and speci-
men coordinate systems, can be deduced from the above Eqs (3-7). Starting from
Eq. (1) one gets

{ε} = [S] {σ} ⇔ [Tε′ε] {ε′} = [S][Tσ′σ] {σ′} ⇔ {ε′} = [Tσ′σ]
T [S][Tσ′σ] {σ′} . (8)

Therefore, in an arbitrary off-axes configuration, the Hooke’s law in the specimen
coordinate system is given by

εxx
εyy
εzz
γyz
γxz
γxy


=


S ′
11 S ′

12 S ′
13 S ′

14 S ′
15 S ′

16

S ′
12 S ′

22 S ′
23 S ′

24 S ′
25 S ′

26

S ′
13 S ′

23 S ′
33 S ′

34 S ′
35 S ′

36

S ′
14 S ′

24 S ′
34 S ′

44 S ′
45 S ′

46

S ′
15 S ′

25 S ′
35 S ′

45 S ′
55 S ′

56

S ′
16 S ′

26 S ′
36 S ′

46 S ′
56 S ′

66





σxx

σyy

σzz

τyz
τxz
τxy


⇒ {ε} = [S] {σ} (9)
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with,
[S ′] = [Tσ′σ]

T [S][Tσ′σ]. (10)

From the anisotropic elasticity theory, it is possible to derive an explicit rela-
tionship linking unknown compliance coefficients with specimen dimensions, load-
ing configuration and strain measurements as

[Tε′ε] {ε′} = [S][Tσ′σ] {σ′} (11)

in which,

- [Tε′ε] and [Tσ′σ]: are transformation matrices whose elements are cosine directions
defined in function of the off-axis angles between material and specimen
coordinates systems;

- {ε′}: lists the strain components across the gauge section in the specimen coor-
dinate system;

- {σ′}: lists the stress state applied to the specimen (applied load).

- [S]: is a function of the components of the compliance matrix completely defining
the orthotropic behaviour of the material.

In practice, the strain components at the gauge section ({ε′}) can be determined by
a suitable full-field optical method, as for instance, 3D digital image correlation.
When the orthotropic material can be assumed homogeneous, an average value
over the gauge section can be determined.

Given an off-axes configuration, let us consider a first loading case consisting
in a uniaxial compression stress along the x direction

{σx} =
{
F/A, 0, 0, 0, 0, 0

}T
. (12)

In this case the linear system of Eqs. (11) can be re-written as

σxx


l21 l22 l23 0 0 0 0 0 0
0 l21 0 l22 l23 0 0 0 0
0 0 l21 0 l22 l23 0 0 0
0 0 0 0 0 0 l1l2 0 0
0 0 0 0 0 0 0 l2l3 0
0 0 0 0 0 0 0 0 l1l3





S11

S12

S13

S22

S23

S33

S44

S55

S66


= [Tε′ε] {ε′} (13a)
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or, in compact form
[Ax] {S} = {bx} (13b)

The system of Eqs. (13) is undetermined since there are only six equations for nine
unknowns compliance elements. In order to solve this linear system, a possibility
is considering at least two independent loading cases. In practice, this can be
achieved by carrying out the compression test along different loading axis, as for
instance,

• Uniaxial loading case 1:

{σx} = {F/A, 0, 0, 0, 0, 0}T =⇒ [Ax] {S} = {bx}

• Uniaxial loading case 2:

{σy} = {0, F/A, 0, 0, 0, 0}T =⇒ [Ay] {S} = {by}

• Uniaxial loading case 3:

{σz} = {0, 0, F/A, 0, 0, 0}T =⇒ [Az] {S} = {bz}
This approach yields to an overdetermined system of equation which can be solved
with regard to the compliance components ({S}) using the concept of pseudo-
inverse. Generically, for the three compression loading systems, Eqs. (13) can be
re-write as [Ax]

[Ay]
[Az]

 {S} =

{bx}{by}
{bz}

 (14a)

or, in compact form
[R] {S} = {q} . (14b)

Finally, Eqs. (14) can then be solved as

{S} = ([R]−1[R])−1[R]−1 {q} . (15)

3. Finite element analyses

3.1. Finite element model

A 3D finite element model of the off-axis compression test was built in ANSYSr

14. Clear wood was modelled as a continuous and homogeneous medium with an
orthotropic linear elastic behaviour. Maritime pine (Pinus pinaster Ait.) was con-
sidered with properties as summarised in Table 1 [2]. According to the experimen-
tal work, the dimensions of the specimen were taken equal to 68(R)×36(T)×33(L)
mm [1]. The 3D 8-node structural SOLID185 was selected from the element library.
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Table 1: Engineering constants of maritime pine used in finite element analyses [2].

EL ER ET νRT νTL νLR GRT GLT GLR

(GPa) (GPa) (GPa) (-) (-) (-) (GPa) (GPa) (GPa)

15.1 1.91 1.01 0.59 0.051 0.47 0.286 1.22 1.41

The ANEL anisotropic elastic model was used for material parameter definition.
A mesh with 37407 nodes and 34370 elements was defined (Fig. 2). The element
size was set to 1.25 mm, which is an order of magnitude higher than the displace-
ment spatial resolution that can be typically achieved experimentally by a digital
image correlation technique. No symmetry of the model about the y and z axes
was taken into account, so the numerically deformation across the whole lateral
surfaces could be processed exactly as performed experimentally [1].

The compression test was simulated by contact boundary conditions. The com-
pression plates were simulated by a rigid surface TARGE170 element. CONTA173
element was selected for simulating the contact interface between bottom and top
surfaces of the model and the target rigid surface. Degree of freedom (translations
and rotations) were then applied to target nodes simulating the compression test
in the linear elastic domain. The friction coefficient of 0.5 was firstly chosen, but it
can be changed according to the experimental procedure for reduction of friction
effects.

The convergence of the model (mesh and contact boundary conditions) was
checked assuming a compression test parallel to the grain (i.e., in which material
and specimen coordinate systems were coincident) based on a specimen with nom-
inal dimensions of 25(R)×25(T)×100(L) mm according to the ASTM D 143 stan-
dard [3] (longitudinal direction L parallel to the y axis of the specimen). From the
numerical deformation at an external surface, a longitudinal modulus of elasticity
was determined according to the following closed-form solution (data reduction):
EL = (P/A)/εL, where P represents the global applied load, A is the cross-section
of the specimen and εL is the axial strain along the longitudinal direction. Numer-
ically, P was determined as the vertical reaction force at the upper target nodes.
Moreover, εL was defined as the average value of the nodal y axial strains within
a central area of 5×5 mm (this area could correspond experimentally to the mea-
suring region covered by a strain gauge or an optical method). The error between
the calculated and reference EL values was negligible.

3.2. Identifiability analyses

The finite element model presented before will be used in further analyses in
order to investigate boundary effects on the mechanical response of the specimen.
Moreover, it will be used to optimise the test configuration in terms of grain
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Figure 2: Finite element model of the off-axis compression test.

orientation with regard to the identifiability of all active stiffness components. The
angles orientation (rotation transformation matrix) can be defined by following
three basic rotation matrices corresponding to elementary rotations about the x,
y, and z axis

[Rx(θL)] =

1 0 0

0 cos θL sin θL

0 − sin θL cos θL

 (16a)

[Ry(θR)] =

cos θR 0 − sin θR

0 1 0

sin θR 0 cos θR

 (16b)

[Rz(θT )] =

 cos θT sin θT 0

− sin θT cos θT 0

0 0 1

 (16c)

in which, the final rotation transformation matrix will then be given by

[Rt] = [Rz(θT )][Ry(θR)][Rx(θL)] (16d)

=

 l1 l2 l3

m1 m2 m3

n1 n2 n3


where (Li,mi, ni) are the direction cosines of ei (i = 1, 2, 3) with regard to the
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global coordinate system S(0, i, j,k). For the purpose of optimum test configura-
tion, a cost function can be defined as

ϕ(θL, θR, θT ) =
△

6(ε21 + ε22 + ε23 + γ2
23 + γ2

13 + γ2
12)

. (17a)

with

△ = (ε1 − ε2)
2 + (ε1 − ε3)

2 + (ε1 − γ23)
2 + (ε1 − γ13)

2 + (ε1 − γ12)
2 (17b)

+(ε2 − ε3)
2 + (ε2 − γ23)

2 + (ε2 − γ13)
2 + (ε2 − γ12)

2

+(ε3 − γ23)
2 + (ε3 − γ13)

2 + (ε3 − γ12)
2

+(γ23 − γ13)
2 + (γ23 − γ12)

2 + (γ13 − γ12)
2

Eventually, the minimisation of the cost function, ϕ(θi) (i = L,R, T ) (Eq. 17),
should yield a configuration in which the strain components are balanced out
and evenly spread across the gauge section. Therefore, this configuration should
correspond to an optimum configuration for the multi-parameter identification
purposes.

The strain components on the material coordinate system figuring in the cost
function of Eq. (17) can be deduced analytically from the anisotropic elasticity
theory. From this theory and assuming a uniaxial stress state along the x axis
(σx = εx/S

′
11) the following expression can be obtained

ε1/εx = (S11l
2
1 + S12l

2
2 + S13l

2
3)/S

′
11 (18a)

ε2/εx = (S12l
2
1 + S22l

2
2 + S23l

2
3)/S

′
11

ε3/εx = (S13l
2
1 + S23l

2
2 + S33l

2
3)/S

′
11

γ23/εx = (S44l1l2)/S
′
11

γ13/εx = (S55l2l3)/S
′
11

γ12/εx = (S66l1l3)/S
′
11

with
S ′
11 = S11c

4 − 2S16c
3s+ (2S12 + S66)c

2s2 − 2S26cs
3 + S22s

4 (18b)

Assuming reference properties of a given wood species Eqs. (18) can be used in
the minimisation process of optimum off-axes angle orientation (Eq. 17) of the
prismatic specimen. Fig. 3 shown the evaluation of Eq. (17) with regard to off-
axis angles θL (θR = θT = 0), θR (θL = θT = 0), θT (θL = θR = 0). From this
preliminary result, it can be concluded that this cost function is more sensitive to
θR and θT than to θL. Moreover, angles of about θR = 29◦ and θT = 9◦ should
yield better identification stiffness values.

10



Figure 3: Evaluation of cost function (Eq. 17) with regard to off-axis angle θL (θR = θT = 0),
θR (θL = θT = 0), θT (θL = θR = 0).

4. Experimental work

4.1. Material and specimens

The material used in this work was wood with nominal dimensions of 60×40×40
mm and arbitrary orientation between material and coordinate systems. The ro-
tation angles (Eq. 16) were determined after testing according to the procedure
described in [1]. Before testing, the specimens were conditioned at a room tem-
perature of 20±2◦C and 65±5%.

4.2. Stereovision measurements

The stereovision or 3D digital image correlation method (3D-DIC) was cho-
sen in this work. This is a white-light optical technique which provides the 3D
displacement field over plane or moderate curved surfaces [4, 5]. It can be more
easily coupled with conventional apparatus such as a universal testing machine
than an interferometric counterpart (namely because no specific equipment such
as a laser or an anti-vibration table is required). Besides, considering the biologi-
cal nature of the material, this technique has the advantage of being non-intrusive
and requires simpler specimen preparation (speckle pattern) then other white-light
techniques such as grid methods [6, 7]. Moreover, the utilisation of a stereovision
system was advantageous in practice because: (i) a pair of lateral surfaces on the
compression test could be measured simultaneously; (ii) a measurement volume
is defined through the calibration procedure of the stereovision system, therefore
specimens can be flexibility positioned and aligned as long as they fit into this
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Figure 4: Finite element model of the off-axis compression test.
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Figure 5: Finite element model of the off-axis compression test.

virtual space. However, when compared to a monovision system (DIC-2D), the
main disadvantage is that the uncertainty on the evaluation of the parameters of
the camera model represents an additional uncertainty on the displacement mea-
surement, and therefore on the evaluation of the material parameters.

The stereovision technique is a full-field technique for measuring the 3D (in-
plane and out-of-plane) displacement/strain fields of a given 3D object. The anal-
ysis is based on a sequence of pair of stereo images recorded during the object
deformation. A binocular stereovision (a measuring system with a pair of left and
right cameras) is used for assessing the position of a 3D point in space (with regard
to a given world coordinate system) from the knowledge of its stereo projection
points in the two recorded images (Fig. 4). This process is known as triangulation.
On the one hand, this method requires a camera calibration consisting in determin-
ing the extrinsic (the relative position and orientation of the coordinates systems
associated to the two cameras) and intrinsic parameters of the camera model. On
the other hand, a correspondence of the projection points on the two cameras must
be established (stereo-matching problem) using for instance the epipolar constant
concept.

The digital image correlation method is based on the assumption that the
surface of the object under analysis has a textured pattern such that the light
intensity, diffusely reflected over the surface, will vary continuously with a suit-
able contrast. Different techniques have been successfully used for the creation of
such a speckle pattern, employing spray or airbrush paint, toner powder deposit
or lithography. In this work, the speckle pattern was created by aerosol spray,
applying a thin coating of white paint followed by a spot distribution of black
paint (Fig. 5).

In the DIC method, the displacement field is measured by analysing the geo-
metrical deformation of the images of the surface of interest, recorded before and
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Table 2: Measuring parameters.

Project parameter – Facet

Facet size 15×15 pixels
Step size 13×13 pixels

Project parameter – Strain
Computation size 5×5 facets
Validity code 55%
Strain computation method Total

Image recording
Acquisition frequency 1 Hz

after deformation. For this purpose, the initial (undeformed) image is mapped
by correlation windows (facets), within which an independent measurement of the
displacement is calculated. Therefore, the facet size on the object plane will de-
fine the spatial resolution of the displacement. Typically, a great facet size will
improve the precision of the measurements but also will degrade the spatial res-
olution. Thus, a compromise must be found according to the application to be
handled. In this work, a facet size of 15×15 pixels was chosen, attending to the
size of the region of interest, the optical system (magnification) and the quality of
the granulate (average speckle size) obtained by the spray painting (Table 1). The
facet step was set to 13×13 pixels allowing an overlapping of 2 pixels (Table 1), in
order to enhance spatial resolution. The in-plane displacements were then numer-
ically differentiated in order to determine the strain field needed for the material
characterisation problem on a base computation size of 5 subsets (Table 1).

To estimate the accuracy of the measuring system, motionless tests were per-
formed after calibration, consisting in recording several images of a target object
without applying any deformation. These images were then processed based on
the digital image correlation, in order to compute the 3D full-field displacements.
Noisy maps were typically obtained following a Gaussian normal distribution as
shown in Fig. 6. The resolution in both displacement and strain associated to the
3D full-fiel measurements were estimated as the standard deviation of these noise
fields. The resolution of in-plane displacements (ux, uy) were in the range of 0.54
µm, whilst a value of about 2.40 µm was reached for the out-of-plane displacement
(uz) (field of view of 36.1 × 64.7 mm). The strain resolution was estimated about
0.011 %. Besides, as it can be concluded from the normal distribution (Fig. 6), no
significant systematic (bias) errors occur.
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(a)

(b)

(c)

Figure 6: Estimation of the resolution associated to DIC-3D (a) X displacement component (σux

= 0.54 µm); (b) Z displacement component (σuz = 2.40 µm); (c) X strain component (σεx =
0.011 %) (Field of view : 36.1 × 64.7 mm).
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Figure 7: Problems with compression test: (right) Friction at the ends prevents spreading, which
results in barreling; (left) buckling effects.

4.3. Compression test

A compression test on a rectangular prismatic specimen was proposed in this
work. In order to be meaningful, friction and buckling effects must be avoid or
minimised when carrying out a compression test. Friction between specimen and
platens tend to prevent the lateral spreading of material near the ends, eventually
inducing a barrel-like shape deformation of the specimen (Fig. 7). Friction can
be reduced by using a lubricant promoting the free movement of the specimen
at the contact surface. Friction can also be reduced by increasing the height-to-
width/thickness ratio, but this ratio must be chosen in order to prevent buckling.
Tests were carry out on a servo-hydraulic tensile machine under displacement
control with a rate of 0.2 mm/min. The load cell was measured by means of a
load cell of 100 kN capacity.

5. Preliminary results, conclusions and future work

A first set of results are summarised in Fig. 8 [1]. By comparing these results
with literature values reported in Table 3, one can conclude that reasonable agree-
ment can be found among the engineering constants. Although improvements
should be achieved in the identifiability of some elastic properties as for instance
the Young’s modulus along the grain (EL).

In future collaborations the following issued are to be addressed:

- Optimisation of the off-axes compression test method with regard to bound-
ary conditions and off-axes angle orientation (balancing out strain compo-
nents on the material coordinate system);

16



Figure 8: Engineering constants measured from the proposed off-axes compression test [1].

Table 3: Literature reference properties of softwood species.

EL ER ET GLR GLT GRT νLR νLT νRT

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

11400-16103 1500 800-1353 900 600-1228 255-280 0.3-0.46 0.3-0.52 0.68-0.71

- Utilization of interferometric optical method for enhance resolution associ-
ated to the strain tensor;

So far, in the result of this STSM the following publications are envisaged:

[1 ] Xavier, J.; Majano-Majano, A.; Fernandez-Cabo, J. Identifiability of stiff-
ness components of clear wood from a single off-axes compression test. 15th
International Conference on Experimental Mechanics, Faculty of Engineer-
ing, University of Porto, Portugal, 22-27 July, 2012;

[2 ] Majano-Majano, A.; Fernandez-Cabo, J.; Xavier, J. Characterization of
clear wood by a single specimen: evaluation of first results and further
improvements. 6th European Congress on Computational Methods in Ap-
plied Sciences and Engineering (ECCOMAS 2012), Vienna, Austria, 10-14
September, 2012;
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