COST Action FP1004 Final Meeting

15 April – 17 April 2015 – Lisbon, Portugal

Cross Laminated Timber (CLT) – Overview and Development

R Brandner¹⁾, G Flatscher¹⁾, A Ringhofer¹⁾, <u>G Schickhofer¹⁾</u>, A Thiel²⁾

¹⁾ Graz University of Technology | ²⁾ holz.bau forschungs gmbh

Content

- Introduction
- Production & Technology
- Characteristic Properties
- Design
- Connections
- Conclusions

Content

Introduction

- Production & Technology
- Characteristic Properties
- Design
- Connections
- Conclusions

Introduction

Cross Laminated Timber (CLT) ...

- plate-like engineering timber product, composed of an uneven number of crosswise layers → locking effect
- opens new dimensions in (timber) engineering (e.g. monolithic buildings)
 - high degree and accuracy in pre-fabrication
 - dry and clean construction sites
 - short erection times

→ SOLID TIMBER CONSTRUCTION TECHNIQUE IN CLT!

Introduction – CLT as 2D element

Introduction – CLT as 1D element

beam without openings

tapered beam | notched support | openings

detail 1: 5-layered beam element

detail 2: notched support detail 3: opening

Introduction

Shifting Market Shares $\rightarrow RFC$ | CLT

- CLT extends, not competes timber engineering
- CLT substitutes mineral based building products masonry & reinforced concrete

Introduction

Worldwide CLT Activities

- currently > 90 % volume produced in Central Europe
- standards & new production sites in US, CA, JP ('CLT_roadmap') expected
- long-time expectation: relevance of CLT comparable to GLT

Content

- Introduction
- Production & Technology
- Characteristic Properties
- Design
- Connections
- Conclusions

Production & Technology – Types of CLT

FLEXIBLE composites

- annular ringed shank nails
- metal brackets, screws, ...
- hardwood dowels, screws

RIGID composites by surface bonding hydraulic / pneumatic / vacuum press facilities (→ pressure "global") screws, brackets or nails (→ pressure "local")

Production & Technology PRODUCTION: overview | STEPs I/II

Production & Technology PRODUCTION: overview | STEPs II/II

Production & Technology PRODUCTION: base material & grading requ.

- strength grading acc. tensile properties recommended!
- $t_B = 20, 30, 40 \text{ mm} \mid w_{B,ref} = 150 \text{ mm} \mid w_B \mid t_B \ge 4 \mid u = 12\pm2 \%$
- primary softwoods, hardwoods & combinations can be advantageous!
- Iaminar EWP for single layers possible

➔ mechanical properties of each layer shall be defined by the lowest strength class of the used base material!

Production & Technology PRODUCTION: gaps within layers

Gaps widths between boards ...

- currently top layers ≤ 2(3) mm; core layers ≤ 4(6) mm
- some approvals allow gaps ≤ 10 mm!

➔ gaps negatively influence …

- building physics (e.g. fire design, airborne sound, air tightness)
- joining technique, i.e. pin-shaped fasteners
- appearance quality
- → AIM: minimizing gaps!
- → CLT of single layer panels may be (temporarily) advantageous!

Production & Technology PRODUCTION: surface bonding

continuously by press facilities

- hydraulic (pneumatic) press (0.10 to 1.00) N/mm²
- vacuum press (0.05 to 0.10) N/mm²

discontinuously by pin-shaped fasteners

• pressing with screws, nails or brackets (0.01 to 0.20) N/mm²

Production & Technology PRODUCTION: hydraulic press facilities

		MINDA "CLT press" (G)	Kallesoe "CLT press" (DK)	
CLT dimensions		l = (6.0 to 18.0) m w = (2.1 to 3.5) m t = (70 to 400) mm	l = (4.0 to 20.0) m w = (2.2 to 3.2) m t = (60 to 400) mm	
type of	press system	continuous	discontinuous high frequ.	
	vertical, p_v	(0.4 to 0.6 (0.8)) N/mm²	≤ 1.0 N/mm²	
bonding pressure	horiz. transv., p_{h,t}	10 kN/m	available	
	horiz. long., p_{h,l}	45 kN	available	

© Minda Industrieanlagen GmbH

© Kallesoe Maschinery A/S

Production & Technology PRODUCTION: automatic production line (MINDA)

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

CODE

Production & Technology Transport & Assembling

storage (production site)

charging and transport

discharging (building site)

assembling of roof elements

assembling of ceiling elements

assembling of wall elements

Content

- Introduction
- Production & Technology
- Characteristic Properties
- Design
- Connections
- Conclusions

Characteristic Properties Proposed Strength Values

base material	Τ	4	
CV [ft,0,1]	25 % ± 5 %	35 % ± 5 %	
	CLT strength class		
property	CL 24h	CL 28h	
$f_{m,CLT,k}$	24	28	
$f_{t,0,CLT,net,k}$	16	18	
$f_{t,90,CLT,k}$	0.	5	
$f_{c,0,CLT,net,k}$	24	28	
$f_{c,90,CLT,k}$	3.	0	
$f_{v,CLT,IP,k}$	5.	5	
$f_{T,node,k}$	2.	5	
$f_{v,CLT,OP,k}$	3.	5	
$f_{r,CLT,k-} w_B/t_B \ge 4:1$	1.2	25	
$f_{r,CLT,k-} w_B / t_B < 4:1$	0.1	70	

... research work is needed

Characteristic Properties Proposed Stiffness Values

base material	T	4
CV [ft,0,1]	25 % ± 5 %	35 % ± 5 %
	CLT stren	gth class
property	CL 24h	CL 28h
$E_{0,CLT,mean}$	11,0	000
E _{0,CLT,05}	9,1	67
$E_{90,CLT,mean}$	30	00
E _{90,CLT,05}	25	50
E _{c,90,CLT,mean}	4(00
E _{c,90,CLT,05}	33	30
G _{CLT,mean}	65	50
G _{CLT,05}	54	10
G _{r,CLT,mean}	1(00
G _{r,CLT,05}	8	3

Characteristic Properties

Selected Topics | Latest Findings

base material	T	4
CV [ft,0,1]	25 % ± 5 %	35 % ± 5 %
	CLT stren	gth class
property	CL 24h	CL 28h
$f_{m,CLT,k}$	24	28
$f_{t,0,CLT,net,k}$	16	18
$f_{t,90,CLT,k}$	0.	5
$f_{c,0,CLT,net,k}$	24	28
$f_{c,90,CLT,k}$	3.	0
$f_{v,CLT,IP,k}$	5.	5
$f_{T,node,k}$	2.	5
$f_{v,CLT,OP,k}$	3.	5
$f_{r,CLT,k-}$ $b/t \ge 4:1$	1.2	25
$f_{r,CLT,k-} b/t < 4:1$	0.7	70

... research work is needed

Characteristic Properties

Compression Perp. to Grain | General

Characteristic Properties Compression Perp. to Grain | MA Ciampitti (2013)

Brandner R., Schickhofer G. (2014) *Properties of cross laminated timber (CLT) in compression perpendicular to grain.* paper 47-12-5 presented at the first INTER conference at University of Bath, UK.

PROPOSED specimen: 5 layers, $t_1 = 30$ mm, $A_c = 150^2$ mm², $t_{CLT} = 150$ mm

PROPOSED basic values: $f_{c,90,12,k} = 3.0 \text{ N/mm}^2 | E_{c,90,12,mean} = 400 \text{ N/mm}^2$

Characteristic Properties

Selected Topics | Latest Findings

base material	T	4
CV [ft,0,1]	25 % ± 5 %	35 % ± 5 %
	CLT stren	gth class
property	CL 24h	CL 28h
$f_{m,CLT,k}$	24	28
$f_{t,0,CLT,net,k}$	16	18
$f_{t,90,CLT,k}$	0.	5
$f_{c,0,CLT,net,k}$	24	28
$f_{c,90,CLT,k}$	3.	0
$f_{v,CLT,IP,k}$	5.	5
$f_{T,node,k}$	2.	5
$f_{v,CLT,OP,k}$	3.	5
$f_{r,CLT,k-}$ $b/t \ge 4:1$	1.2	25
$f_{r,CLT,k-} b/t < 4:1$	0.7	70

... research work is needed

Characteristic Properties

Shear Mechanisms on an RVSE | General

- Mechanism I "net-shear" transfer of shear via board's cross sections τ_{net} = 2 · τ₀
- Mechanism II "torsion"

torsional shear stresses in gluing interface $\tau_{tor} = 3 \cdot \tau_0 \cdot (t_1 / a)$

Characteristic Properties MA Dröscher (2014)

Overview

- CLT element 1,500 x 500 x var. mm
- config. & analysis acc. to Kreuzinger (2013)
- failure acc. to mechanism I "net-shear"
- interaction compression perp. to grain and shear considered

For edge-bonded boards:

- ➔ gross shear strength f_{v,gross,k} = 3.50 N/mm²
- → gross shear modulus $G_{mean} = 640 \text{ N/mm}^2$

<u>For gaps between boards (w_{gap} ≤ 5 mm):</u>

- → net shear strength f_{v,net,k} = 5.00 ÷ 5.50 N/mm²
- → net shear modulus $G_{mean} = 300 \div 480 \text{ N/mm}^2$

Characteristic Properties

Selected Topics | Latest Findings

base material	T	14	
CV [ft,0,1]	25 % ± 5 %	35 % ± 5 %	
	CLT strength class		
property	CL 24h	CL 28h	
$f_{m,CLT,k}$	24	28	
$f_{t,0,CLT,net,k}$	16	18	
$f_{t,90,CLT,k}$	0.	5	
$f_{c,0,CLT,net,k}$	24	28	
$f_{c,90,CLT,k}$	3.	0	
$f_{v,CLT,IP,k}$	5.	5	
$f_{T,node,k}$	2.	5	
$f_{v,CLT,OP,k}$	3.	5	
$f_{r,CLT,k-} w_B / t_B \ge 4:1$	1	25	
$f_{r,CLT,k-} w_B / t_B < 4:1$	0.2	70	

... research work is needed

Characteristic Properties Rolling Shear | MA Ehrhart (2014)

tests according to EN 408

- varied parameters:
- wood species, log positions, b/d-ratios, no. of boards

3-point bending tests

- varied parameters:
- three inner layers perp. to span length vs. standard lay-up (0|90|0|90|0)

Characteristic Properties Rolling Shear | MA Ehrhart (2014)

tests according to EN 408

→ rolling shear strength
 w_B/t_B < 4: f_{r,CLT,k} = 0.80 N/mm²
 w_B/t_B ≥ 4: f_{r,CLT,k} = 1.40 N/mm²
 → rolling shear modulus
 G_{r,CLT,mean} = 100 N/mm²

3-point bending tests

→ rolling shear strength
 f_{r,CLT,k} = 1.10 ÷ 1.50 N/mm²
 → rolling shear modulus
 G_{r,CLT,mean} = 110 N/mm²

Content

- Introduction
- Production & Technology
- Characteristic Properties
- Design
- Connections
- Conclusions

Design criteria for in- and out-of-plane loaded CLT elements

		CLT element loaded	
		in-plane	out-of-plane
	bending	x ⁴)	x 1) 2) 5)
	tension	x 1) 2) 6)	×
UL3	compression	1)2)6)	x 1) 2)
	shear	x 1) 2) 6)	x 1) 2)
	deflections	x 1) 2)	x 1) 2)
313	vibration		x 1) 2) 3)
 ¹⁾ Schickhofer et al. (2010) ²⁾ Thiel (2013) ³⁾ Hamm et al. (2010) 		 ⁴⁾ Blaß and Flaig (2012); Flaig (2013) ⁵⁾ Jöbstl et al. (2006); Jöbstl (2007) ⁶⁾ Bogensperger et al. (2010) 	

Design of CLT ULS – CLT loaded out-of-plane

Calculation of stresses and deformations

For CLT in particular the **shear flexibility of the transverse layers** has to be considered.

known procedures (approximative methods)

- γ-method
- shear analogy method
- transverse shear-flexible beam according to Timoshenko

Within a practical relevant range of $I_{CLT} / t_{CLT} \ge 15$ are all applicable.

Design of CLT ULS – CLT loaded out-of-plane

Normal stress $\frac{\sigma_{\max,d}}{f_{m,\text{CLT,d}}} \le 1.0$ $\sigma_{\max,d} = \max\left[\frac{M_{y,d}}{K_{\text{CLT}}} z E_{\text{mean}}(z)\right]$ Shear stress $\frac{\tau_{\max,d}}{f_{v,\text{CLT,d}}} \le 1.0$ $\frac{\tau_{r,\max,d}}{f_{r,\text{CLT,d}}} \le 1.0$ $\tau(z_0) = \frac{V_z \int_{A_0} E(z) z \, dA}{K_{\text{CLT}} b(z_0)}$

Bending stiffness $K_{\text{CLT}} = \sum (E_i I_i) + \sum (E_i A_i e_i^2)$

Design of CLT SLS – CLT loaded out-of-plane

1.0

Deflections

Due to shear-flexible cross layers, it is essential to also include deformations caused by shear. $for ratio G_0/G_r = 10$

For $G_0/G_r = 10$ the shear correction coefficient is nearly constant and about $\frac{1}{4}$ of an unidirectional rectangular cross section.

COST FP1004 – Enhance mechanical properties of timber, engineered wood products and timber structures

1.0

Design of CLT SLS – CLT loaded out-of-plane

Vibration

For CLT elements with spans larger than 4 m, vibration usually governs the design.

Most common known procedures in Europe:

- EN 1995-1-1 (2009)
- suggestions of Hamm and Richter (2010)

Primarily they verify the **natural frequency**, the **stiffness criteria** and the **vibration acceleration**.

Design of CLT Software tools

CLTdesigner holz.bau forschungs gmbh

-		-	-	
_		01.	des	igner
		L	holz bea fo	schungs gritte
	Versic	en 2.2		
	© holz bau forsch inffelig 8010 Aus Tet: +43 00 3 Fax: +43 01 3 Register d Register coart Gras Commercial register	ungs gmbh 201 asse 24 Graz tria 16/873/4601 16/873/4619 office: Graz z Commercial Co number: FN 232	0 UPT 6821	
Bate 10	fore loaded in place. I Con	antine 1		
			5-	
	Continuous beam	Internal f	proes	

www.cltdesigner.at

CLTcalculator for iPhone and iPad by Aladin Mikara

Design of CLT Special design proposals

Concentrated loads on floors – Mestek (2011), Bogensperger (2014a)

Concentrated loads on walls – Bogensperger (2014b)

Design of CLT Special design proposals

Rib floors as composite of CLT and GLT – Bogensperger (2013)

Openings in CLT beam elements (loaded in-plane) – Flaig (2014)

Content

- Introduction
- Production & Technology
- Characteristic Properties
- Design
- Connections
- Conclusions

Connections General

Joints within a CLT structure

- (i) wall-to-wall or floor-to-floor
- (ii) wall-to-floor
- (iii) wall-to-foundation

Topics at TU Graz

- (a) base parameter of single fastener
- (b) performance and application of connections

Base parameters - 6 main research projects

Base parameters - 6 main research projects

Proposal of an universal model approach

Base parameters - 6 main research projects

Block shear failure mode in CLT side face

Withdrawal (group) failure in CLT narrow face

Proposal
$$F_{ax} = 0.9 \cdot (n_{\alpha} \cdot F_{ax,1,\alpha} + m_{\beta} \cdot F_{ax,1,\beta})$$

Base parameters - 6 main research projects

Performance & Application

Test campaigns of TU Graz

SINGLE JOINT TESTS

- angle brackets, hold-downs and screws
- CLT/CLT as well as CLT/concrete or steel
- shear and tension | monotonic and cyclic
- overall 215 tests on single joints

Performance & Application

Test campaigns of TU Graz

WALL TESTS

- 5 configurations 17 tests
- variation of connections and vertical loads
- walls with and without vertical joints and openings

Performance & Application

Test campaigns of TU Graz

SHAKING TABLE TESTS

- full scale three-storey CLT building
- European Union project SERIES (Seismic Engineering Research Infrastructures for European Synergies)
- 32 earthquakes up to 0.5 g without major damages

Importance of clear defined screwed joints

Importance of clear defined screwed joints

Content

- Introduction
- Production & Technology
- Characteristic Properties
- Design
- Connections
- Conclusions

Conclusions I/III

DEVELOPMENT | GENERAL

- accelerated rise in worldwide production volume expected within coming decade
- for product | testing | design | detailing | joining | use
 standardization is mandatory

PRODUCTION

- dominated by (modular) hydraulic press systems
- AIM: minimizing gaps
- assembling stations & engineering as logical further vertical extensions

Conclusions II/III

PRODUCT | DESIGN

- harmonized load-bearing models
 - \rightarrow prediction of CLT properties based on base material properties
- CLT strength class system
- harmonized design procedures (e.g. ULS/SLS bending out-of-plane)

JOINING

- differentiation in side and narrow face is mandatory
- CLT adequate connection technique is missing (e.g. line instead of punctual connections)
 - allowing for energy dissipation, e.g. in seismic loading
 - high flexibility & short assembling time
 - high degree of utilization (comparable to CLT capacity)

Conclusions III/III

CLT ...

- → opens new possibilities and horizons in timber engineering!
- → enables renaissance of timber engineering in our cities!
- → peculiarities of timber (e.g. moisture) need to be addressed!

THANK YOU FOR YOUR KIND ATTENTION!

