COST FP1004

STSM report

15-17 April 2015 – Lisbon, Portugal

Glued-in rods in beech-LVL timber frames

Mislav Stepinac, Frank Hunger, Vlatka Rajčić, J-W van de Kuilen

Glued in rods

STSM

- State of the art in GiR
- Comparison of design rules
- Online survey
- Laboratory tests (GiR in LVL)

Glued in rods

d = diameter of rod l = anchorage length d_h = diameter of hole e = glue line thickness

Three materials:

- Main body Timber (hardwood, softwood, glulam, CLT, LVL)
- Rod steel or FRP
- Adhesive PUR, PRF, EPX

Design philosophy – failure modes

Steel-adhesive zone, yielding of the rod

Wood-adhesive zone a) bond failure, b) cohesive failure in the wood near to the bond line

Splitting failure of the wood

Tensile failure - wood

Group shear failure

EUROPEAN COOPERATION

$$\begin{aligned} &\mathsf{R}_{\mathsf{ax},\mathsf{k}} = \mathsf{f}_{\mathsf{w}1} \times \rho_{\mathsf{c}} \times \mathsf{d} \times \mathsf{I}_{\mathsf{g}} &\mathsf{I}_{\mathsf{g}} < 200\mathsf{mm} \\ &\mathsf{R}_{\mathsf{ax},\mathsf{k}} = \mathsf{f}_{\mathsf{ws}} \times \rho_{\mathsf{c}} \times \mathsf{d} \times \mathsf{I}_{\mathsf{g}}^{0,5} &\mathsf{I}_{\mathsf{g}} \geq 200\mathsf{mm} \end{aligned}$$

 f_{w1} = glue strength factor (for EPX, PRF = 37, for PUR= 46 N/mm²) f_{ws} = glue strength factor (for EPX, PRF = 520, for PUR= 650 N/mm²) ρ_c = characteristic density [kg/m3] I_g = anchorage length [mm] d = smaller diameter between the rod and the hole

GIROD

$P_f = \tau_f \times \pi \times d \times I \times (tanh\omega/\omega)$

Adhesive	d mm	/ mm	a mm	l _{geo} mm	Failure load, P _f kN	$P_f / (\pi d l)$ N/mm ²	τ _f N/mm ²	<i>I</i> ,,, mm	G_f 1) Nmm/ mm ²
16	320	115	16300	77.36	4.81				
PRF	16	160	115	4070	63.83	7.94	8.9	11000	4.15
	16	320	115	16300	98.43	6.12			
PUR	16	160	115	4070	58.98	7.33	9.7	3960	1.77
	16	320	115	16300	74.09	4.61			

1) G_f calculated from l_m with the assumption $E_f=205000$ N/mm².

Table 1 – Tests results for determination of material property parameter τ_f and I_m . The failure load indicated is the average value of 10 tests in each set.

$$\mathbf{R}_{ax,k} = \mathbf{\pi} \times \mathbf{d}_{equ} \times \mathbf{I}_a \times \mathbf{f}_{ax,k} \times (tanh\omega)/\omega \qquad \mathbf{I}_{min} = max(0,4d^2, 8d)$$
$$\mathbf{I}_a/d < 18$$

l_a= anchorage length [mm]

 d_{equ} = equivalent diameter = min (d_{hole} , 1.25d) [mm], d= d_{nom} for threaded rods and d=1,1× d_{nom} for deformed reinforcing bars

$$f_{ax,k} = 5,5 \text{ N/mm}^2$$
$$\omega = \frac{0.016 l_a}{\sqrt{d_{equ}}}$$

$$R_{ax,d} = \pi \times d \times I_{ad} \times f_{k1,d}$$

$$\begin{split} I_{ad} &\leq 250 \text{ mm: } f_{k1,k} = 4,0 \text{ [N/mm^2]} \\ 250 \text{ mm} &< I_{ad} \leq 500 \text{ mm: } f_{k1,k} = 5,25 - 0,005 \text{ x } I_{ad} \text{ [N/mm^2]} \\ 500 \text{ mm} &< I_{ad} \leq 10000 \text{ mm: } f_{k1,k} = 3,5 - 0,015 \text{ x } I_{ad} \text{ [N/mm^2]} \end{split}$$

 $f_{k1,d}$ = design value of bond line strength I_{ad} = anchorage length [mm]

 $6mm \le d \le 30 mm$

 $I_{ad,min} = max\{0,5 \times d^2; 10 \times d\}$

Pull – out strength ???

Pull – out strength ???

 I_{min} =max(0,4d², 8d) $I_{ad,min}$ =max{0,5 x d²;10 x d} 5d < I < 20d

 $I_{a}/d < 18$

EPX, I=200mm, p=370kg/m3, e=2mm

• **Objective:** to gather overall knowledge and interest in glued-in rods

Three parts:

- use of glued-in rods in practice (15 questions),
- regulations and standards (8),
- extent of scientific research on the subject (7).

Online survey

From which type of intitution/company are you coming from?

University	36	61%
Timber industry	3	5.1%
Practice (construction)	3	5.1%
Practice (design)	8	13.6%
I'm a student	0	0%
Other	9	15.3%

1.5. If you have ever designed a structure with GIR, in which buildings have you used it?

Timber bridges	11	18.6%
Long-span buildings	17	28.8%
Residential buildings	14	23,7%
New Buildings	17	28.8%
Historical buildings	19	32.2%
Other	1	1.7%

Online survey

2.6. Which parts of the standard related to GIR should be improved?

Pull-out strength	17	28.8%
Stiffness	22	37.3%
Edge distances and spacings	27	45.8%
Multiple rods	34	57.6%
Definition about materials used (wood species)	16	27.1%
Definition about materials used (rod materials)	11	18.6%
Definition about materials used (types of glue)	28	47.5%
Influence of grain angle	22	37.3%
Duration of load	26	44.1%
Production control	24	40.7%
Other	6	10.2%

Key problems, Stepinac et al., CIB (2013)

KEY PROBLEMS:

1. Unified EC5 design rules do not exist

2. Design rules were underestimating the load bearing capacity of the connection

3. Ductility should be treated as a key issue (e.g. ductility should be assigned to the steel rod and not to the adhesive)

4. There was no reliable rule for multiple rods (e.g. brittleness could lead to progressive failure in multiple rod connections)

5 .Lack of understanding on duration of load, the interaction between axial load and transverse load, and the influence of grain angle

6. Non user-friendly formulae.

Present situation and problems with standardization

- Timber glulam, softwood, LVL??
- Rods steel, FRP
- Adhesive PUR, EPX, PRF
- Slenderness ratio
- Rod to grain angle
- Loading conditions
- Multiple rods
- Spacings and distances
- Service classes
- Durability and longterm behaviour
- Production method
- On site bonding or factory production

Laboratory tests

pull - compression

Results – failure modes

Thank you for your attention!

