Innovative Timber Composites: Improving wood with other materials

17 October 2013 – Nicosia, Cyprus

Investigation of the potential of hot-pressed wood in all-timber connections

Wen-Shao Chang

Department of Architecture and Civil Engineering University of Bath, UK

Nicholas Nearchou

Engenuiti Limited, UK

hot-pressed wood in all-timber connections

Introduction

•Bonded-in rod connections are becoming a popular connecting method.

•The problems include:

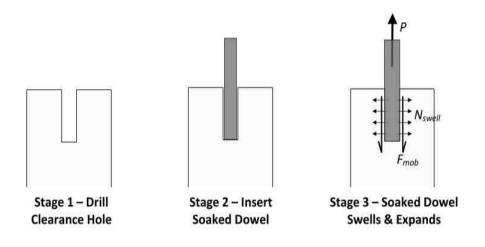
- 1. Material disharmonisation
- 2. Use of adhesives or glues

•Some systems have tried to address the issue of material disharmonisation, such as glass fibre reinforced polymer (GFRP) glued-in rods.

•Some adhesives used in an external environment have also been known to leach into the surrounding eco-system causing deterioration

•This project proposes a new system, binderless hot-pressed dowel, to tackle the issues addressed

hot-pressed wood in all-timber connections


Hot-pressed wood

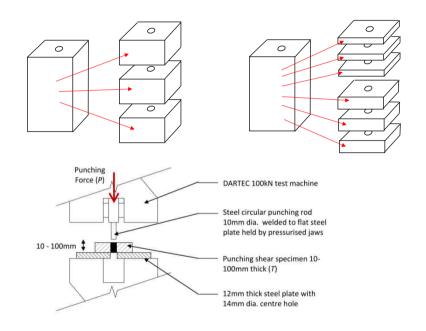
- C16 Red Western cedar (*Thuja plicata*) with average density of 390kg/m³ was used.
- The platens of the hot-pressed machine were pre-heated to 130°C
- wood specimens were then placed between platens and pressed for 5 minutes with compression ratio of 40%.

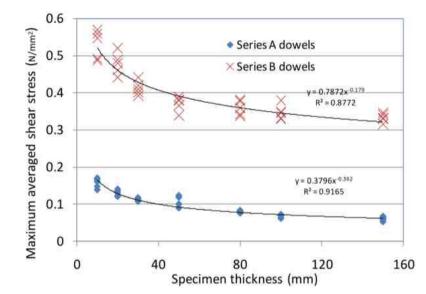
$$C = \frac{R_0 - R_c}{R_0} \times 100[\%]$$

Dowel bending tests

- A total of 10 hot-pressed specimens were then cut into dimensions of 12x12x240mm for bending tests.
- The effective span between supports was set to be 200mm. All testing procedures and determination methods were conducted in compliance with BS EN 408:2003.

hot-pressed wood in all-timber connections


- Average Modulus of Elasticity (MOE) of 13.2kN/mm with a standard deviation of 0.64kN/mm, comparable to timber with strength class of C35 (E_{0,mean}=13 kN/mm).
- The 5% MOE (E_{0.05}) is 11.91kN/mm, comparable to timber with strength class of C50 (11.05kN/mm).
- The MOE has increased by two times compared with strength class C16 after the hot-pressed process


Punching Shear Tests

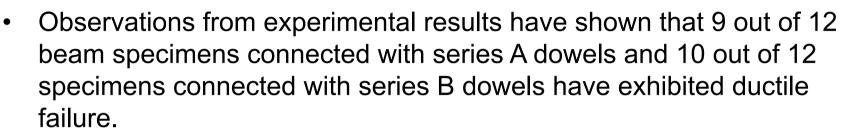
- Clear and small Western cedar samples were prepared and hotpressed from 23mm to 14mm thick.
- The series A were left for 4 days to allow for spring back then shaved into 12mm diameter round dowels.
- The series B were shaved into 12mm diameter round dowels right after the completion of hot-press process.
- Thicknesses tested include 10, 20, 30, 50, 80, 100 and 150mm.

 Series B show much higher peak values, and in consequence lead to higher averaged maximum shear stresses.

Specimens series	Averaged P _{max} (N)	Maximum averaged Shear stress, τ _{av, peak} (N/mm ²)	Specimens series	Averaged P _{max} (N)	Averaged maximum Shear stress, T _{av, peak} (N/mm ²)	
A-10	58.89 (5.05) ¹	0.156 (0.013)	B-10	200.41 (14.62)	0.532 (0.039)	
A-20	97.57 (6.39)	0.129 (0.008)	B-20	361.01 (22.55)	0.479 (0.030)	
A-30	125.99 (4.70)	0.111 (0.004)	B-30	467.32 (21.61)	0.413 (0.019)	
A-50	199.81 (26.56)	0.106 (0.014)	B-50	700.07 (36.83)	0.371 (0.020)	
A-80	237.05 (10.14)	0.079 (0.003)	B-80	1085.73 (60.62)	0.360 (0.020)	
A-100	251.08 (18.39)	0.067 (0.005)	B-100	1310.42 (75.52)	0.348 (0.020)	
A-150	339.29 (31.74)	0.060 (0.006)	B-150	1884.20 (66.84)	0.333 (0.012)	
¹ standard deviations shown in brackets						

Beam tests

- A hot pressed dowel was used to connect two pieces of timber with dimensions of 75x150x600mm to build a beam with length of 1.2m.
- The edge distances tested include: 2d (24mm), 3d (36mm), 4d (48mm) and 5d (60mm); where d is the dowel diameter.

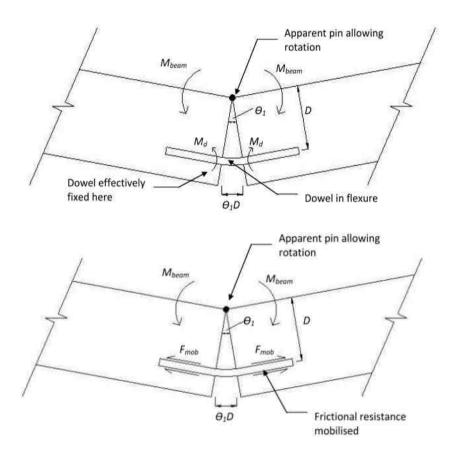

Specimens	type of dowel ¹	edge distance	No. of specimens 3	
A-2d	1	2d		
A-3d	1	3d	3	
A-4d	1	4d	3	
A-5d	1	5d	3	
B-2d 2		2d	3	
B-3d	2	3d	3	
B-4d 2		4d	3	
B-5d	2	5d	3	

"1" represents the same process of dowels in group A in punching shear tests; whereas "2" means the group B.

hot-pressed wood in all-timber connections

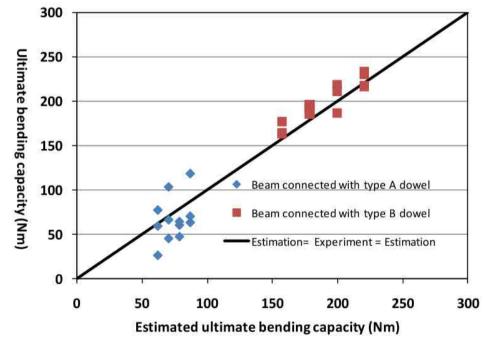
- Specimens that failed in a ductile manor seemed to partially snap forming an intact hinge at peak moment.
- It was found that those specimens connected by dowels with density higher than 700kg/m³ exhibit failure in brittle manner.

Specimens	Ultimate strength M _{ult} (Nm)	Initial Rotational Stiffness k _i (kNm/rad)	Rotation at Peak Moment θ _{peak} (rads)	Rotation at Failure $\theta_{failure}$ (rads)	900 - (_E	700 kg/m ³	
A-2d	84.67 (29.94) ¹	2.76 (3.08)	0.14 (0.07)	0.27 (0.05)	E 600		
A-3d	58.00 (8.89)	2.78 (1.46)	0.11 (0.04)	0.34 (0.04)	of dowel (kg/m ³)	A	
A-4d	72.33 (29.37)	1.01 (0.34)	0.16 (0.12)	0.34 (0.04)	we		
A-5d	55.00 (25.87)	0.75 (0.33)	0.25 (0.13)	0.37 (0.02)	р 100		
B-2d	227.48 (8.68)	6.32 (1.03)	0.18 (0.06)	0.33 (0.04)	5 300	• Description of addition of a description	
B-3d	206.26 (16.85)	5.87 (1.52)	0.16 (0.02)	0.36 (0.01)	Isity	Beam connected by series A dowel	
B-4d	192.27 (5.57)	3.63 (0.73)	0.20 (0.08)	0.29 (0.06)	Der	Beam connected by series B dowel	
B-5d	168.88 (7.73)	2.88 (0.47)	0.14 (0.04)	0.26 (0.03)	0 -	E E E E	
standard devia	ations shown in bra	ackets			0	0 50 100 150 200 Utimate strength, Mu (Nm)	



The analytical approach considers: 1.Dowel as a beam in pure flexure 2.Friction between dowel and parent material

$$M_{Rd} = M_d D \left(\frac{1}{E_d I_d} + \mu \frac{3}{2l} \right) + \frac{1}{2} \mu f_{swell} l D \pi d$$


Where M_{Rd} is the ultimate moment in the beam, μ is the kinetic coefficient of friction, M_d is the dowel bending capacity, D is the lever arm, f_{swell} is the swelling pressure of dowel, E_d is the modulus of elasticity of dowel.

Good agreement was found in comparison between the estimated moment capacity of beam and those results obtained from experiments.

Conclusions

- The hot-pressed process will significantly enhance the mechanical properties of timber.
- Fairly modest moment capacities in the region of 0.055 0.085 kNm was observed for specimens with type A dowel and 0.16-0.24 kMm was observed in the specimens with type B dowel.
- All the specimens showed very high rotations at failure around 0.30 – 0.35 radians (17 – 20°) which is favourable for structural applications to provide early pre-collapse warning.

