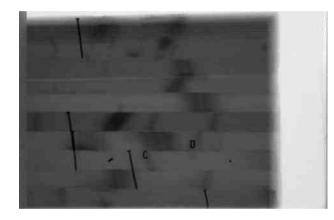
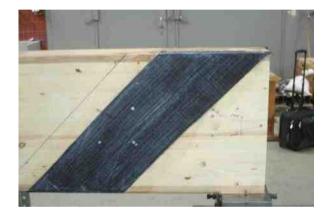
Innovative Timber Composites: Improving wood with other materials

17 October 2013 – Nicosia, Cyprus

Comparison of different techniques for the strengthening of glulam members

Robert Widmann


EMPA Structural Engineering Research Laboratory Duebendorf, Switzerland

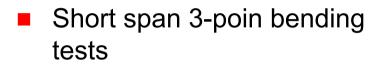


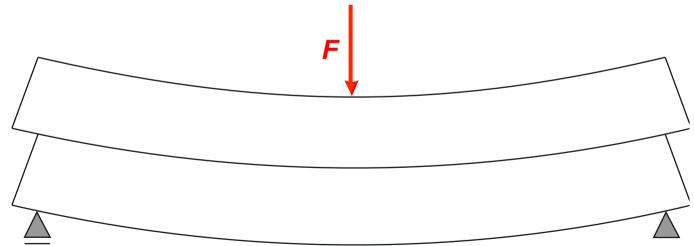
AP-Holz Project

Practically oriented Assessment and Strengthening of Glulam Elements

Projectparameters

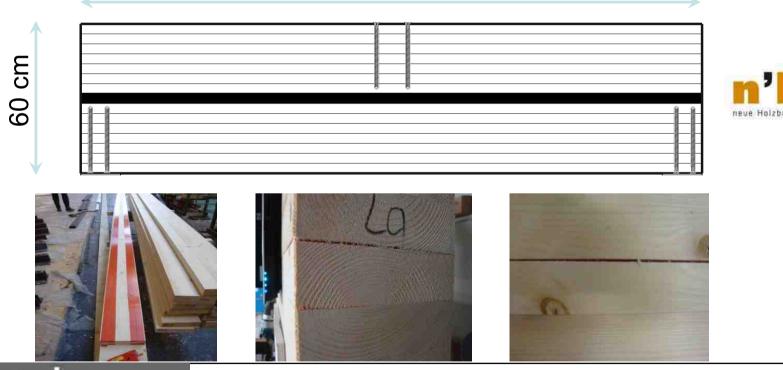
- Duration 10/2010 bis 03/2013
- Budget 1.1 Mio. CHF, of which 550 kCHF by FOEN
- In total12 project partners




Test Setup for provoking Shear Failures

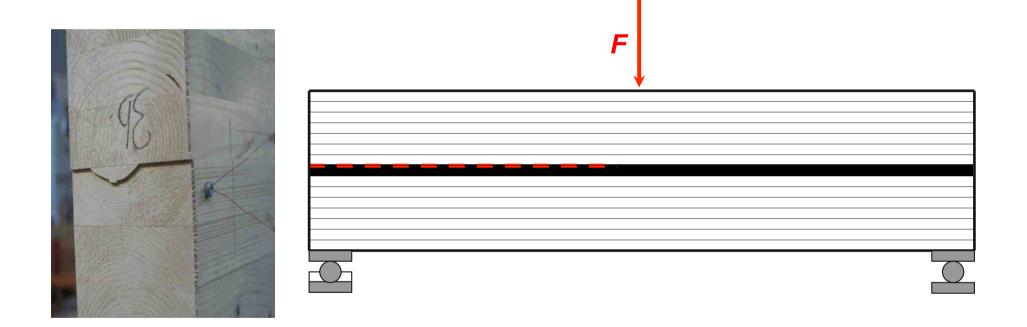
Strengthening Techniques:

- Glued-in rods
- CFRP sheets
- Clamps
- Self tapping screws
- Refilling of glueline
- CLT / LVL



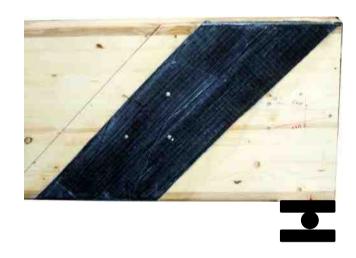
Test Specimens

- 4 x 2 Beams, Glulam Gl 24 (h), Norway Spruce, with Edge-lamellas from Ash
- Center-lamella missglued
- Reinforcement with selftapping screws at supports and loading point 250 cm



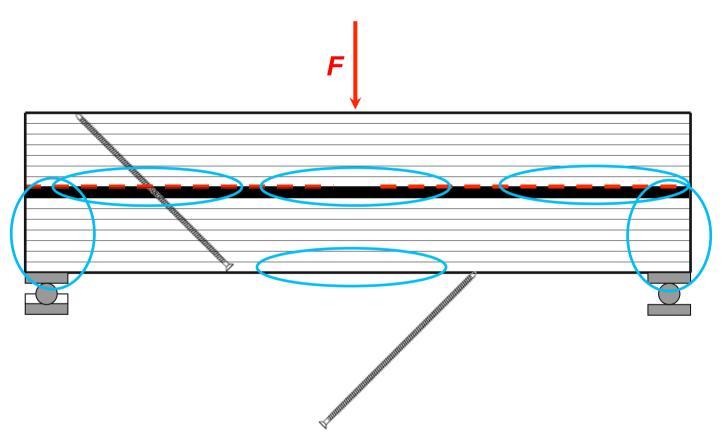
Short span 3-point bending tests

Test Cycles



Reinforcement Techniques

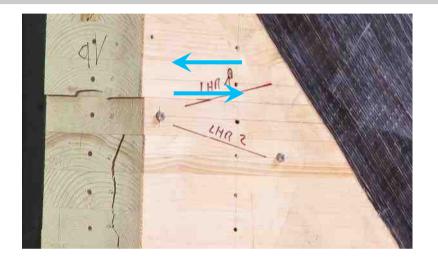
- 1 x SFS WT 13 x 800
- 2 x SFS WT 13 x 800
- 4 x SFS WT 13 x 800

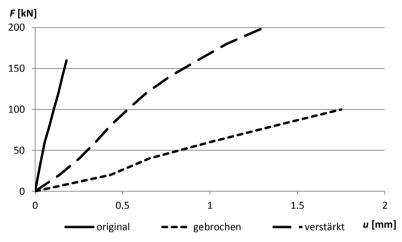

- 1 x SikaWrap®-230 C/45
- 2 x SikaWrap®-230 C/45

Test Cycles

At **F**_{max} different failure modes occured

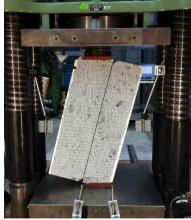
Test Results Strength




Beam	Reinforcement	Failure Mode	F			σ*_ ۵۵
			kN	N/mm ²	N/mm ²	N/mm ²
	none	shear	160	1.43	10.8	3.57
	1 x 1 CFRP	shear	218	1.95	14.7	4.87
	2 x 1 CFRP	compression perp.	303	2.71	20.5	6.76
1b	none	shear	240	2.14	16.2	5.36
	1 x 2 CFRP	shear	251	2.24	20.0	5.60
	2 x 2 CFRP	compression perp.	436	3.89	29.5	9.73
2a	none	(delaminated)	0	0	0	0
	1 x 4 SFS 13	shear	220	1.96	14.9	4.91
	2 x 4 SFS 13	compression perp.	361	3.22	24.4	8.06
	none	shear	180	1.61	12.2	4.02
	1 x 4 SFS 13	shear	244	2.18	16.5	5.45
	2 x 4 SFS 13	compression perp.	290	2.59	19.6	6.47
	none	shear	200	1.79	13.5	4.46
	1 x 2 SFS 13	shear	240	2.14	16.2	5.36
	2 x 2 SFS 13	bending	372	3.32	25.1	8.30
	none	shear	235	2.10	15.9	5.25
	1 x 2 SFS 13	shear	329	2.94	22.2	7.34
	2 x 2 SFS 13	shear	398	3.55	26.9	8.88
	none	shear	208	1.86	14.1	4.64
	1 x 1 SFS 13	shear	290	2.59	19.6	6.47
	2 x 1 SFS 13	shear	376	3.36	25.4	8.39
	none	shear	196	1.75	13.2	4.38
	1 x 1 SFS 13	shear	245	2.19	16.6	5.47
	2 x 1 SFS 13	bending	360	3.21	24.3	8.04

Test Results Stiffness

Lamella Deformation Modulus V/u in kN/mm


Beam	Reinforcement	original	failed	reinforced	Factor	Mean
1a	1 x CFRP	406	95	223	2.35	2.35
1b	2 x CFRP	426	28	108	3.86	3.86
2a	4 x SFS		24	59	2.49	2.72
2b		550	29	86	2.95	
3a	2 x SFS	244	26	55	2.10	2.24
3b		492	25	60	2.38	
4a	1 x SFS	253	22	40	1.80	1.68
4b		334	30	47	1.57	

Conclusions

- Missglued glulam beams were tested upon shear failure, then reinforced and tested again
- Reinforcements tested so far (SFS self-tapping screws and Sika CFRP mesh) showed high strength
- Stiffness after failure and reinforcement clearly inferiour to initial stiffness
- Effective shear strength of the reinforcements could not be determined due to different failure modes.
- Next steps: different strengthening techniques and different test methods (14° compression-shear test)

